Di recente mi è capitato di seguire più da vicino il fenomeno dell’Intelligenza Artificiale. Un tema apparentemente nuovo che, in realtà, affonda le sue radici molto più indietro nel passato e si collega in modo molto forte alla filosofia della mente e alla storia del pensiero umano.
Ho studiato il fenomeno dal punto di vista più “umanistico” (posto che questo termine abbia ancora un senso al giorno d’oggi) occupandomi di cercare quei collegamenti tra la psicologia cognitiva, le neuroscienze, la filosofia e le interfacce di intelligenza artificiale che sono presenti sul mercato.
Tralasciando per un attimo questo aspetto – oggetto della mia tesi di laurea in Intelligenza Artificiale e, appunto,processi cognitivi – mi preme, in questa sede, analizzare il fenomeno da un punto di vista di applicazioni e ricadute sul mercato e – in senso esteso – sulla società nella quale viviamo.
Un recente discussion paper di McKinsey analizza il fenomeno proprio da questo punto di vista sottolineando prospettive interessanti che meritano di essere approfondite (per chi fosse interessato il report completo è disponibile a questo indirizzo: https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning).
Prima di tutto è opportuno definire i confini dell’Intelligenza Artificiale e mappare quelli che sono gli ambiti di applicazione entro i quali è possibile spendere questa tecnologia. Come si legge nell’articolo di McKinsey:
As artificial intelligence technologies advance, so does the definition of which techniques constitute AI. For the purposes of this briefing, we use AI as shorthand for deep learning techniques that use artificial neural networks. We also examined other machine learning techniques and traditional analytics techniques
A livello complessivo possiamo dire che se fino a qualche anno fa l’Intelligenza Artificiale si concretizzava in una “semplice” imitazione della mente umana e delle sue caratteristiche matematico-logiche e linguistiche specifiche, oggi è un costrutto che riguarda molto di più la capacità di apprendere dei sistemi. In sostanza abbiamo compreso che l‘apprendimento è forse la caratteristica più importante che ci rende umani e stiamo progettando i sistemi uomo-macchina e macchina-macchina di conseguenza.
Nello schema sotto si ritrovano moltissimi ambiti di applicazione dell’AI che riguardano proprio questo processo evolutivo.
La prima evidenza che emerge dal report di McKinsey è che l’Intelligenza Artificiale e il machine learning in senso esteso possono essere applicati ad una infinità di ambiti lavorativi e a moltissime industry che regolano il nostro mercato. I risultati sono differenti a seconda dell’ambito applicativo, ma i vantaggi sono comuni alle differenti realtà.
Tra i principali che si possono ottenere:
- Manutenzione predittiva, sfruttando il machine learning e i sistemi di intelligenza artificiale per comprendere e anticipare possibili anomalie nei sistemi.
- Miglioramento della logistica anticipando flussi di traffico e prevedendo possibili soluzioni alternative in caso di problemi. Nell’ambito trasporti e logistica si ha – infatti – uno delle aree principali dell’AI con l’evoluzione dei sistemi classici in chiave intelligente, in modo da essere in grado di gestire in modo dinamico anche situazioni imprevedibili.
- Personalizzazione del customer service e della capacità di servire al meglio il cliente. Una delle sfide principali imposte dalla digitalizzazione è quella che riguarda il mutato ruolo del social customer di cui abbiamo più volte dibattuto in questa e in altre sedi. La capacità aggiuntiva fornita dall’AI è quella di essere più efficienti ed efficaci nella capacità di rispondere – in tempo quasi reale o reale – alle molteplici sollecitazioni ed esigenze del cliente.
Inoltre, come si legge nel report:
In 69 percent of the use cases we studied, deep neural networks can be used to improve performance beyond that provided by other analytic techniques. Cases in which only neural networks can be used, which we refer to here as “greenfield” cases, constituted just 16 percent of the total
L’intelligenza artificiale è in grado di fornire un enorme supporto all’interno della definizione e della comprensione dell’analisi di dati. L’incremento rispetto alle classiche tecniche di gestione dell’informazione è notevole e merita una seria riflessione da parte delle aziende che ancora non hanno intrapreso questo percorso di evoluzione. Quantomeno è necessario – specie per le realtà più grosse – che ci sia un tavolo di riflessione su questi temi all’interno dell’impresa.
Sono proprio i dati a giocare un ruolo fondamentale nei processi di digitalizzazione del futuro. Il modello deve essere il più articolato possibile in modo da permetterci di migliorare la nostra capacità di gestire, comprendere e maneggiare dati.
Il potenziale di mercato è davvero enorme. Come si legge nel report:
We estimate that the AI techniques we cite in this briefing together have the potential to create between $3.5 trillion and $5.8 trillion in value annually across nine business functions in 19 industries. This constitutes about 40 percent of the overall $9.5 trillion to $15.4 trillion annual impact that could potentially be enabled by all analytical techniques
Si tratta di cifre molto elevate che meritano di essere prese in seria considerazione specie per quelle industry nominate sopra dove questo potenziale è ancora più amplificato.
Non è tutto oro quello che luccica però. Sono presenti anche alcune barriere e alcune difficoltà che impediscono l’introduzione di queste tecnologie o ne limitano la massimizzazione dei risultati.
- La difficoltà nel gestire l’etichettatura dei dati che spesso deve essere fatta manualmente
- La difficoltà nell’ottenere set di dati che siano sufficientemente ampi e onnicomprensivi da poter essere utilizzati per il training degli algoritmi
- La difficoltà nello spiegare i processi umani che stanno dietro alle decisioni importanti e alle scelte chiave. Come sappiamo dalla psicologia della decisione, siamo esseri che prendono decisioni non sempre su basi razionali e concrete.
- La generalizzazione dell’apprendimento. L’essere umano è in grado di estendere quello che ha imparato in una situazione a determinate altre situazioni della sua vita. Si tratta di un processo fondamentale che i sistemi di intelligenza artificiale ancora faticano a fare
- Un ulteriore rischio è rappresentato dai bias che si concretizzano quando si sceglie un campione non rappresentativo per il training e per la configurazione dell’algoritmo.
Infine abbiamo anche un tema di regolazione di un mercato e di una tecnologia completamente nuove, anche se – come si legge:
Therefore, some policy innovations will likely be needed to cope with these rapidly evolving technologies. But given the scale of the beneficial impact on business the economy and society, the goal should not be to constrain the adoption and application of AI, but rather to encourage its beneficial and safe use.