Archives For November 30, 1999

«La tecnologia ci pone di fronte a problemi fondamentali che non possono essere superati basandoci su quanto abbiamo fatto nel passato. Abbiamo bisogno di un approccio più tranquillo, più affidabile, più a misura d’uomo
Donald Norman

Negli ultimi anni si è verificato un passaggio che fatichiamo ancora a tematizzare fino in fondo. Per la prima volta nella storia del web, la quantità di contenuti generati da sistemi di intelligenza artificiale ha superato quella prodotta da esseri umani. Non si tratta di una previsione o di una provocazione teorica, ma di un dato empirico rilevato su larga scala attraverso l’analisi degli archivi di Common Crawl.

Questo cambiamento viene spesso letto come un tema di efficienza, di costi o di produttività. In realtà, riguarda qualcosa di più profondo. Il linguaggio è sempre stato una tecnologia cognitiva e sociale. Attraverso il linguaggio costruiamo senso, riconosciamo l’altro, definiamo ciò che consideriamo affidabile, legittimo, vero. Quando la fonte dominante del linguaggio diventa artificiale, l’impatto non riguarda solo ciò che leggiamo, ma il modo in cui pensiamo e, di conseguenza, il modo in cui ci relazioniamo.


Un ecosistema informativo saturo

L’aumento dei contenuti generati da AI ha prodotto un ecosistema informativo densissimo, caratterizzato da testi formalmente corretti, scorrevoli, spesso persuasivi, ma sempre più simili tra loro. È ciò che molti hanno iniziato a definire AI slop: una produzione continua di contenuti plausibili, ridondanti, privi di ancoraggio esperienziale.

Il problema non risiede nel singolo testo, bensì nella configurazione complessiva dell’ambiente cognitivo in cui siamo immersi. Un ecosistema saturo di contenuti sintetici modifica la nostra dieta cognitiva, riduce l’attrito interpretativo e abbassa progressivamente la soglia di attenzione critica. In questo contesto, la distinzione tra vero, verosimile e semplicemente ben scritto diventa sempre più fragile.

È qui che prende forma quella che molti studiosi definiscono una crisi epistemica. Non è soltanto la verità a essere contestata; è il criterio stesso attraverso cui attribuiamo valore al sapere. L’intelligenza artificiale non opera secondo categorie epistemiche, ma secondo criteri di probabilità linguistica. Produce testi coerenti e rassicuranti anche quando il legame con la realtà è debole o assente. In un ambiente già attraversato da disintermediazione e polarizzazione, questo contribuisce a erodere la fiducia, che resta il fondamento di ogni relazione sociale.

Linguaggio, stile e appiattimento espressivo

Uno degli effetti meno visibili, ma più rilevanti, di questa trasformazione riguarda lo stile. Studi recenti sui Large Language Models mostrano una tendenza sistematica alla ripetizione di specifiche strutture retoriche, con una drastica riduzione della varietà espressiva. Il caso dell’epanortosi enfatica, è emblematico: una figura retorica nata per intensificare il discorso diventa una soluzione di default, ripetuta meccanicamente.

Il risultato è un linguaggio che appare chiaro e incisivo, ma che nel tempo perde profondità. La complessità viene sostituita da formule riconoscibili, transizioni standardizzate, opposizioni semplificate. Questo stile non resta confinato ai testi generati dall’AI. Viene interiorizzato dagli utenti, replicato nei post, nelle presentazioni, nelle comunicazioni professionali. I modelli apprendono dal web e, a loro volta, contribuiscono a uniformarlo.

Quando il linguaggio si omologa, anche il pensiero tende a farlo. E quando il pensiero perde articolazione, la relazione con l’altro si impoverisce. La riduzione delle sfumature linguistiche si traduce in una riduzione della capacità di comprendere punti di vista differenti, ambiguità, contraddizioni.

Empatia, soft skill e narrazioni difensive

Di fronte a questi cambiamenti, una parte del dibattito continua a rifugiarsi in narrazioni difensive. Le soft skill vengono presentate come l’ultimo baluardo dell’umano. Il concetto di human in the loop viene evocato come garanzia di controllo e superiorità antropologica.

Queste categorie rischiano di non essere più adeguate. I sistemi di intelligenza artificiale contemporanei dimostrano capacità conversazionali e relazionali sempre più sofisticate. In ambiti come la medicina, il supporto psicologico o il customer care, alcuni modelli vengono percepiti come empatici, attenti, disponibili, spesso più di molti interlocutori umani sottoposti a pressioni organizzative e cognitive crescenti.

Questo non implica che l’AI possieda empatia in senso fenomenologico. Significa che l’empatia, nella sua dimensione comportamentale e comunicativa, può essere simulata con grande efficacia. Continuare a definire l’umano solo attraverso ciò che la macchina non fa più rischia di diventare una strategia concettualmente fragile.


Modelli degradati e cultura dominante

Un ulteriore elemento di complessità riguarda la qualità cognitiva dei modelli stessi. Ricerche recenti mostrano che sistemi addestrati su grandi volumi di dati social, caratterizzati da rumore, polarizzazione e bassa qualità informativa, manifestano un calo delle capacità di ragionamento. Emergono fenomeni come il thought-skipping, l’indebolimento delle catene logiche e anomalie nei test psicometrici.

Questi segnali non sono incidenti isolati. Riflettono la qualità del contesto culturale da cui i modelli apprendono. L’intelligenza artificiale incorpora e amplifica una visione del mondo specifica, largamente allineata a valori e stili cognitivi occidentali, istruiti, industrializzati. Il cosiddetto bias WEIRD non è un dettaglio tecnico, ma una questione epistemologica e politica.

Parlare di AI inclusiva senza interrogarsi su queste premesse rischia di produrre una narrazione rassicurante ma poco fondata. L’AI è un dispositivo culturale che riflette e rinforza modelli dominanti, anche quando si presenta come neutrale.

Innovazione culturale e meta-competenze

Se l’intelligenza artificiale agisce come amplificatore della cultura in cui nasce, allora la questione centrale diventa culturale prima che tecnologica. La risposta non può limitarsi a nuove competenze operative. Serve un investimento sulle meta-competenze.

  • Riflessività, nel senso proposto da Schön, per comprendere come gli strumenti trasformano chi li utilizza.
  • Resistenza cognitiva, per evitare che la velocità e la fluidità sostituiscano il pensiero articolato.
  • Consapevolezza linguistica, per preservare la varietà espressiva e la capacità di abitare la complessità.

L’AI va orientata come dispositivo culturale, capace di espandere possibilità di senso anziché ridurle. La questione decisiva riguarda la forma dell’esperienza che stiamo costruendo. In un ecosistema cognitivo ibrido, la posta in gioco non è l’imitazione dell’umano da parte della macchina, ma la capacità degli esseri umani di non adattarsi passivamente a linguaggi sempre più semplificati.

Su questo terreno si gioca il futuro delle relazioni, del sapere e della responsabilità culturale nell’era dell’intelligenza artificiale.

Di recente mi è capitato di seguire più da vicino il fenomeno dell’Intelligenza Artificiale. Un tema apparentemente nuovo che, in realtà, affonda le sue radici molto più indietro nel passato e si collega in modo molto forte alla filosofia della mente e alla storia del pensiero umano.

Ho studiato il fenomeno dal punto di vista più “umanistico” (posto che questo termine abbia ancora un senso al giorno d’oggi) occupandomi di cercare quei collegamenti tra la psicologia cognitiva, le neuroscienze, la filosofia e le interfacce di intelligenza artificiale che sono presenti sul mercato.
Tralasciando per un attimo questo aspetto – oggetto della mia tesi di laurea in Intelligenza Artificiale e, appunto,processi cognitivi – mi preme, in questa sede, analizzare il fenomeno da un punto di vista di applicazioni e ricadute sul mercato e – in senso esteso – sulla società nella quale viviamo.

Un recente discussion paper di McKinsey analizza il fenomeno proprio da questo punto di vista sottolineando prospettive interessanti che meritano di essere approfondite (per chi fosse interessato il report completo è disponibile a questo indirizzo: https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning).

Prima di tutto è opportuno definire i confini dell’Intelligenza Artificiale e mappare quelli che sono gli ambiti di applicazione entro i quali è possibile spendere questa tecnologia. Come si legge nell’articolo di McKinsey:

As artificial intelligence technologies advance, so does the definition of which techniques constitute AI. For the purposes of this briefing, we use AI as shorthand for deep learning techniques that use artificial neural networks. We also examined other machine learning techniques and traditional analytics techniques

A livello complessivo possiamo dire che se fino a qualche anno fa l’Intelligenza Artificiale si concretizzava in una “semplice” imitazione della mente umana e delle sue caratteristiche matematico-logiche e linguistiche specifiche, oggi è un costrutto che riguarda molto di più la capacità di apprendere dei sistemi. In sostanza abbiamo compreso che l‘apprendimento è forse la caratteristica più importante che ci rende umani e stiamo progettando i sistemi uomo-macchina e macchina-macchina di conseguenza.

Nello schema sotto si ritrovano moltissimi ambiti di applicazione dell’AI che riguardano proprio questo processo evolutivo.

AI Sectors for McKinsey

La prima evidenza che emerge dal report di McKinsey è che l’Intelligenza Artificiale e il machine learning in senso esteso possono essere applicati ad una infinità di ambiti lavorativi e a moltissime industry che regolano il nostro mercato. I risultati sono differenti a seconda dell’ambito applicativo, ma i vantaggi sono comuni alle differenti realtà.
Tra i principali che si possono ottenere:

  • Manutenzione predittiva, sfruttando il machine learning e i sistemi di intelligenza artificiale per comprendere e anticipare possibili anomalie nei sistemi.
  • Miglioramento della logistica anticipando flussi di traffico e prevedendo possibili soluzioni alternative in caso di problemi. Nell’ambito trasporti e logistica si ha – infatti – uno delle aree principali dell’AI con l’evoluzione dei sistemi classici in chiave intelligente, in modo da essere in grado di gestire in modo dinamico anche situazioni imprevedibili.
  • Personalizzazione del customer service e della capacità di servire al meglio il cliente. Una delle sfide principali imposte dalla digitalizzazione è quella che riguarda il mutato ruolo del social customer di cui abbiamo più volte dibattuto in questa e in altre sedi. La capacità aggiuntiva fornita dall’AI è quella di essere più efficienti ed efficaci nella capacità di rispondere – in tempo quasi reale o reale – alle molteplici sollecitazioni ed esigenze del cliente.

Inoltre, come si legge nel report:

In 69 percent of the use cases we studied, deep neural networks can be used to improve performance beyond that provided by other analytic techniques. Cases in which only neural networks can be used, which we refer to here as “greenfield” cases, constituted just 16 percent of the total

L’intelligenza artificiale è in grado di fornire un enorme supporto all’interno della definizione e della comprensione dell’analisi di dati. L’incremento rispetto alle classiche tecniche di gestione dell’informazione è notevole e merita una seria riflessione da parte delle aziende che ancora non hanno intrapreso questo percorso di evoluzione. Quantomeno è necessario – specie per le realtà più grosse – che ci sia un tavolo di riflessione su questi temi all’interno dell’impresa.

Analytics

Sono proprio i dati a giocare un ruolo fondamentale nei processi di digitalizzazione del futuro. Il modello deve essere il più articolato possibile in modo da permetterci di migliorare la nostra capacità di gestire, comprendere e maneggiare dati.

Il potenziale di mercato è davvero enorme. Come si legge nel report:

We estimate that the AI techniques we cite in this briefing together have the potential to create between $3.5 trillion and $5.8 trillion in value annually across nine business functions in 19 industries. This constitutes about 40 percent of the overall $9.5 trillion to $15.4 trillion annual impact that could potentially be enabled by all analytical techniques

Si tratta di cifre molto elevate che meritano di essere prese in seria considerazione specie per quelle industry nominate sopra dove questo potenziale è ancora più amplificato.

Non è tutto oro quello che luccica però. Sono presenti anche alcune barriere e alcune difficoltà che impediscono l’introduzione di queste tecnologie o ne limitano la massimizzazione dei risultati.

  • La difficoltà nel gestire l’etichettatura dei dati che spesso deve essere fatta manualmente
  • La difficoltà nell’ottenere set di dati che siano sufficientemente ampi e onnicomprensivi da poter essere utilizzati per il training degli algoritmi
  • La difficoltà nello spiegare i processi umani che stanno dietro alle decisioni importanti e alle scelte chiave. Come sappiamo dalla psicologia della decisione, siamo esseri che prendono decisioni non sempre su basi razionali e concrete.
  • La generalizzazione dell’apprendimento. L’essere umano è in grado di estendere quello che ha imparato in una situazione a determinate altre situazioni della sua vita. Si tratta di un processo fondamentale che i sistemi di intelligenza artificiale ancora faticano a fare
  • Un ulteriore rischio è rappresentato dai bias che si concretizzano quando si sceglie un campione non rappresentativo per il training e per la configurazione dell’algoritmo.

Infine abbiamo anche un tema di regolazione di un mercato e di una tecnologia completamente nuove, anche se – come si legge:

Therefore, some policy innovations will likely be needed to cope with these rapidly evolving technologies. But given the scale of the beneficial impact on business the economy and society, the goal should not be to constrain the adoption and application of AI, but rather to encourage its beneficial and safe use.